Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(5): 86, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554160

RESUMO

The Wnt family of secreted proteins are involved in mammary gland development and tumorigenesis. It has recently been shown that Wnt ligands promote M2 macrophage polarization and so we sought to determine the effects of a Wnt signaling antagonist, Secreted Frizzled Related Protein 1 (SFRP1), on M2 marker expression. We measured a murine M2 marker (Arg1) in mice with a targeted deletion of Sfrp1 during different stages of mammary gland development including puberty, pregnancy, and lactation, as well as in response to obesity. Next, to determine whether Wnt signaling/antagonism affects human M2 markers (CD209 and CCL18), we treated a human patient derived explant (PDE) breast tissue sample with exogenous Wnt3a in the presence and absence of rSFRP1. Finally, we expanded our PDE study to 13 patients and performed bulk RNAseq analysis following the treatment described above. We found that in loss of Sfrp1 in the murine mammary gland increased Arg1 expression. Moreover, we showed that Wnt3a increases CD209 and CCL18 mRNA and protein expression in breast PDEs and that their expression is decreased in response to rSFRP1. Our RNAseq analysis unveiled novel genes that were affected by Wnt3a treatment and subsequently reversed when rSFRP1 was added. Validation of these data exhibited that chemokines involved in promoting macrophage polarization and cancer metastasis, including CCL11 and CCL26, were stimulated by Wnt3a signaling and their expression was abrogated by treatment with rSFRP1. Our data suggest that SFRP1 may be an important mediator that tempers Wnt signaling in the tumor microenvironment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Animais , Feminino , Humanos , Camundongos , Gravidez , Mama , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Via de Sinalização Wnt
2.
Artigo em Inglês | MEDLINE | ID: mdl-37593105

RESUMO

Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.

3.
Ecotoxicol Environ Saf ; 241: 113722, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724515

RESUMO

PCB 126 is a pervasive, dioxin-like chemical pollutant which can activate the aryl hydrocarbon receptor (AhR). Despite being banned from the market, PCB 126 can be detected in breast milk to this day. The extent to which interindividual variation impacts the adverse responses to this chemical in the breast tissue remains unclear. This study aimed to investigate the impact of 3 nM PCB 126 on gene expression in a panel of genetically diverse benign human breast epithelial cell (HBEC) cultures and patient derived breast tissues. Six patient derived HBEC cultures were treated with 3 nM PCB 126. RNAseq was used to interrogate the impact of exposure on differential gene expression. Gene expression changes from the top critical pathways were confirmed via qRT-PCR in a larger panel of benign patient derived HBEC cultures, as well as in patient-derived breast tissue explant cultures. RNAseq analysis of HBEC cultures revealed a signature of 144 genes significantly altered by 3 nM PCB 126 treatment. Confirmation of 8 targets using a panel of 12 HBEC cultures and commercially available breast cell lines demonstrated that while the induction of canonical downstream target gene, CYP1A1, was consistent across our primary HBECs, other genes including AREG, S100A8, IL1A, IL1B, MMP7, and CCL28 exhibited significant variability across individuals. The dependence on the activity of the aryl hydrocarbon receptor was confirmed using inhibitors. PCB 126 can induce significant and consistent changes in gene expression associated with xenobiotic metabolism in benign breast epithelial cells. Although the induction of most genes was reliant on the AhR, significant variability was noted between genes and individuals. These data suggest that there is a bifurcation of the pathway following AhR activation that contributes to the variation in interindividual responses.


Assuntos
Bifenilos Policlorados , Receptores de Hidrocarboneto Arílico , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Bifenilos Policlorados/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
4.
Immunol Cell Biol ; 98(10): 883-896, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32713010

RESUMO

Ex vivo mammary explant systems are an excellent model to study interactions between epithelium and stromal cell types because they contain physiologically relevant heterotypic interactions in the background of genetically diverse patients. The intact human mammary tissue, termed patient-derived explant (PDE), can be used to investigate cellular responses to a wide variety of external stimuli in situ. For this study, we examined the impact of cytokines or environmental chemicals on macrophage phenotypes. We demonstrate that we can polarize macrophages within human breast tissue PDEs toward M1 or M2 through the addition of interferon-γ (IFNγ) + lipopolysaccharide (LPS) or interleukin (IL)-4 + IL-13, respectively. Elevated expression levels of M(IFNγ + LPS) markers (HLADRA and CXCL10) or M(IL-4 + IL-13) markers (CD209 and CCL18) were observed in cytokine-treated tissues. We also examined the impact of the endocrine-disrupting chemical, benzophenone-3, on PDEs and measured significant, yet varying effects on macrophage polarization. Furthermore, a subset of the PDEs respond to IL-4 + IL-13 through downregulation of E-cadherin and upregulation of vimentin which is reminiscent of epithelial-to-mesenchymal transition (EMT) changes. Finally, we were able to show immortalized nonmalignant breast epithelial cells can exhibit EMT characteristics when exposed to growth factors secreted by M(IL-4 + IL-13) macrophages. Taken together, the PDE model system is an outstanding preclinical model to study early tissue-resident immune responses and effects on epithelial and stromal responses to stimuli found both endogenously in the breast and exogenously as a result of exposures.


Assuntos
Mama/imunologia , Exposição Ambiental , Ativação de Macrófagos , Benzofenonas/efeitos adversos , Mama/efeitos dos fármacos , Polaridade Celular , Disruptores Endócrinos/efeitos adversos , Feminino , Humanos , Macrófagos/citologia , Técnicas de Cultura de Tecidos
5.
Epigenetics ; 15(10): 1093-1106, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32255732

RESUMO

While changes in DNA methylation are known to occur early in breast carcinogenesis and the landscape of breast tumour DNA methylation is profoundly altered compared with normal tissue, there have been limited efforts to identify DNA methylation field cancerization effects in histologically normal breast tissue adjacent to tumour. Matched tumour, histologically normal tissue of the ipsilateral breast (ipsilateral-normal), and histologically normal tissue of the contralateral breast (contralateral-normal) were obtained from nine women undergoing bilateral mastectomy. Laser capture microdissection was used to select epithelial cells from normal tissue, and neoplastic cells from tumour for genome-scale measures of DNA methylation with the Illumina HumanMethylationEPIC array. We identified substantially more CpG loci that were differentially methylated between contralateral-normal and tumour (63,271 CpG loci q < 0.01), than between ipsilateral-normal and tumour (38,346 CpG loci q < 0.01). We identified differential methylation in ipsilateral-normal relative to contralateral-normal tissue (9,562 CpG loci p < 0.01). In this comparison, hypomethylated loci were significantly enriched for breast cancer-relevant transcription factor binding sites including those for ESR1, FoxA1, and GATA3 and hypermethylated loci were significantly enriched for CpG island shore regions. In addition, progression of shore hypermethylation was observed in tumours compared to matched ipsilateral normal tissue, and these alterations tracked to several well-established tumour suppressor genes. Our results indicate an epigenetic field effect in surrounding histologically normal tissue. This work offers an opportunity to focus investigations of early DNA methylation alterations in breast carcinogenesis and potentially develop epigenetic biomarkers of disease risk. ABBREVIATIONS: DCIS: ductal carcinoma in situ; GO: gene ontology; OR: odds ratio; CI: confidence interval; TFBS: transcription factor binding site; LOLA: Locus Overlap Analysis.


Assuntos
Neoplasias da Mama/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator de Transcrição GATA3/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Regiões Promotoras Genéticas
6.
Breast Cancer Res ; 21(1): 76, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248446

RESUMO

BACKGROUND: Atypical breast hyperplasias (AH) have a 10-year risk of progression to invasive cancer estimated at 4-7%, with the overall risk of developing breast cancer increased by ~ 4-fold. AH lesions are estrogen receptor alpha positive (ERα+) and represent risk indicators and/or precursor lesions to low grade ERα+ tumors. Therefore, molecular profiles of AH lesions offer insights into the earliest changes in the breast epithelium, rendering it susceptible to oncogenic transformation. METHODS: In this study, women were selected who were diagnosed with ductal or lobular AH, but no breast cancer prior to or within the 2-year follow-up. Paired AH and histologically normal benign (HNB) tissues from patients were microdissected. RNA was isolated, amplified linearly, labeled, and hybridized to whole transcriptome microarrays to determine gene expression profiles. Genes that were differentially expressed between AH and HNB were identified using a paired analysis. Gene expression signatures distinguishing AH and HNB were defined using AGNES and PAM methods. Regulation of gene networks was investigated using breast epithelial cell lines, explant cultures of normal breast tissue and mouse tissues. RESULTS: A 99-gene signature discriminated the histologically normal and AH tissues in 81% of the cases. Network analysis identified coordinated alterations in signaling through ERα, epidermal growth factor receptors, and androgen receptor which were associated with the development of both lobular and ductal AH. Decreased expression of SFRP1 was also consistently lower in AH. Knockdown of SFRP1 in 76N-Tert cells resulted altered expression of 13 genes similarly to that observed in AH. An SFRP1-regulated network was also observed in tissues from mice lacking Sfrp1. Re-expression of SFRP1 in MCF7 cells provided further support for the SFRP1-regulated network. Treatment of breast explant cultures with rSFRP1 dampened estrogen-induced progesterone receptor levels. CONCLUSIONS: The alterations in gene expression were observed in both ductal and lobular AH suggesting shared underlying mechanisms predisposing to AH. Loss of SFRP1 expression is a significant regulator of AH transcriptional profiles driving previously unidentified changes affecting responses to estrogen and possibly other pathways. The gene signature and pathways provide insights into alterations contributing to AH breast lesions.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Proteínas de Membrana/genética , Transcriptoma , Adulto , Animais , Biomarcadores , Biomarcadores Tumorais , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hiperplasia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transdução de Sinais
7.
BMC Cancer ; 17(1): 473, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687085

RESUMO

BACKGROUND: Secreted frizzled-related protein 1 (SFRP1) expression is down-regulated in a multitude of cancers, including breast cancer. Loss of Sfrp1 also exacerbates weight gain as well as inflammation. Additionally, loss of SFRP1 enhances TGF-ß signaling and the downstream MAPK pathway. TGF-ß has been shown to increase the expression of Early Growth Response 2 (EGR2), a transcription factor implicated in immune function in a wide variety of cell types. The work described here was initiated to determine whether SFRP1 modulation affects TGF-ß mediated EGR2 expression in mammary tissues as well as macrophage polarization. METHODS: Real-time PCR analysis was performed to examine EGR2 expression in human and murine mammary epithelial cells and tissues in response to SFRP1 modulation. Chemical inhibition was employed to investigate the roles TGF-ß and MAPK signaling play in the control of EGR2 expression in response to SFRP1 loss. Primary murine macrophages were isolated from Sfrp1-/- mice and stimulated to become either M1 or M2 macrophages, treated with recombinant SFRP1, and real-time PCR was used to measure the expression of murine specific M1/M2 markers [Egr2 (M2) and Gpr18 (M1)]. Immunohistochemical analysis was used to measure the expression of human specific M1/M2 markers [CD163 (M2) and HLA-DRA (M2)] in response to rSFRP1 treatment in human mammary explant tissue. RESULTS: Knockdown of SFRP1 expression increases the expression of EGR2 mRNA in human mammary epithelial cells and addition of rSFRP1 decreases the expression of EGR2 when added to explant mammary gland tissues. Chemical inhibition of both TGF-ß and MAPK signaling in Sfrp1-/- or knockdown mammary epithelial cells results in decreased expression of EGR2. Stimulated murine macrophages obtained from Sfrp1-/- mice and treated with rSFRP1 exhibit a reduction in Egr2 expression and an increase in Gpr18 mRNA expression. Human mammary explant tissue treated with rSFRP1 decreases CD163 protein expression whereas there was no effect on the expression of HLA-DRA. CONCLUSIONS: Loss of SFRP1 likely contributes to tumor progression by altering the expression of a critical transcription factor in both the epithelium and the immune system.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/genética , Regulação Neoplásica da Expressão Gênica , Proteínas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Proteínas/genética , Fator de Crescimento Transformador beta/metabolismo
8.
Cell Biol Int ; 39(7): 873-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25809273

RESUMO

Estrogen has been implicated in breast cancer risk for a variety of reasons including its role in stimulating mammary cell division. Secreted frizzled-related proteins (SFRPs) are a family of Wnt signaling antagonists. Loss of Sfrp1 in mice results in focal ductal epithelial hyperplasias and in humans, loss of SFRP1 is associated with early changes in premalignant breast lesions as well as poor overall survival in patients with early stage breast cancer. Considering that SFRP1 expression is further reduced in ER positive breast cancers when compared with ER negative breast cancers, we chose to determine whether loss of Sfrp1 alters ER signaling. Immunohistochemical analysis revealed that loss of Sfrp1 significantly increased the number of PR and BrdU positve cells in the mammary gland. We further demonstrate that down stream actions of ER-mediated signaling, including cellular proliferation and PR transcription, are elevated in estradiol treated explant cultures derived from Sfrp1(-/-) mice. Additionally, we show that Control explant cultures treated with estradiol exhibit an increase in the mRNA levels of Sfrp1. Finally, we establish that in human mammary epithelial cells with either SFRP1 knocked down (TERT-siSFRP1) and rescued SFRP1 expression (MCF7-SFRP1), estrogen signaling is augmented. Modulation of ER activity appears to be through a mechanism dependent upon Wnt/ß-catenin activity. Taken together, our data suggest an important control mechanism by which estrogen signaling is tempered in normal cells and indicates why loss of SFRP1 in early lesions might be a causal change leading to enhanced estrogen-mediated proliferation.


Assuntos
Mama/citologia , Células Epiteliais/metabolismo , Estrogênios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/patologia , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Técnicas de Cultura de Tecidos , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...